Annual Drinking Water Quality Report

TX0140028

MOFFAT WSC

Annual Water Quality Report for the period of January 1 to December 31, 2015

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

For more information regarding this report contact:

Name Mark Truelove

Phone 254-986-2457

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono 254-986-2457

MOFFAT WSC is Purchased Surface Water

Sources of Drinking Water

human activity. or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land

information on source water assesments and protection efforts at our system, contact [insert name of person to contact] your water system are based on this susceptibility and previous sample data. Any detections of these contaminants may be found in this Consumer Confident Report. For more The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for

(800) 426-4791 indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- and gas production, mining, or farming Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses
- from gas stations, urban storm water runoff, and septic systems Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

regulations establish limits for contaminants in bottled water which must provide the same protection for public health In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA

information on taste, odor, or color of drinking water, please contact the system's business office Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more

steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with Hotline (800-426-4791). You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or

plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing

Information about Source Water Assessments

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp?wtrsrc=

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.texas.gov/DWW

SW FROM BLUEBONNET WS	SW FROM BLUEBONNET WS	2-12191 S WHITEHALL, MOODY	1 - MOFFAT RD / WATER SUPPLY RD	Source Water Name
SW	SW	GW	GW	Type of Water
A	_A	A	_A	Report Status
12191 S. Whitehall Rd. Temple TX. (Belton Lake)	6060 water supply RD. Temple TX. (Belton Lake)	12191 S. Whitehall rd. Temle TX. (lower Trinity)	6060 Water Supply Rd. Temple TX. (lower Trinity)	Location

06/27/2016

Lead and Copper

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL) 90th Percentile # Sites Over AL	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	07/30/2013	1.3	1.3	0.335	0	ppm	Z	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	07/30/2013	0	15	2.42	0	þþb	Z	Corrosion of household plumbing systems; Erosion of natural deposits.
							Section Confederation Control Control	

Water Quality Test Results

Avg:

Definitions: The following tables contain scientific terms and measures, some of which may require explanation

Regulatory compliance with some MCLs are based on running annual average of monthly samples

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

million fibers per liter (a measure of asbestos)

not applicable

nephelometric turbidity units (a measure of turbidity)

picocuries per liter (a measure of radioactivity)

pCi/L UIN na: MFL

Water Quality Test Results

ppb:

ppt

ppq

micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

parts per trillion, or nanograms per liter (ng/L)

parts per quadrillion, or picograms per liter (pg/L)

- TX0140028_2015_2016-06-27_09-09-02.DOC

06/27/2016

or see a								
Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2015	20	4.8 - 42.1	No goal for the total	60	ppb	Z	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2015	19	11.1 - 24.5	No goal for the total	80	ppb	Z	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	03/17/2010	0.0398	0.0398 - 0.0398	2	2	ppm	z	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Cyanide	04/15/2014	90	90 - 90	200	200	ppb	Z	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
Fluoride	04/15/2014	0.2	0.2 - 0.2	4	4.0	ppm	Z	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2015	1	0.65 - 0.68	10	10	udd	Z	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Selenium	03/17/2010	3.2	3.2 - 3.2	50	50	ppb	Z	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2015	6.7	6.7 - 6.7	0	50	pCi/L*	z	Decay of natural and man-made deposits.
*EPA considers 50 pC//L to be the level of concern for beta particles	e level of concern for	beta particles.						
Combined Radium 226/228	2015	1.5	1.5 - 1.5	0	5	pCi/L	z	Erosion of natural deposits.
Synthetic organic	Collection Date	Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Source of Contamination

Combined Radium 226/228	2015	1.5	1.5 - 1.5	0	O.	pCi/L	Z	Erosion of natural deposits.
Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination

Di (2-ethylhexyl) phthalate 2015 2 1.8-1.8 0 6 ppb N

DISINFECTANT RESIDUAL TABLE

Disinfectant

	100
	CHLORAMINES
	151
	30
	RAMIN
	121
s III i Balyn	1 1
	N
	0 -
	V 89
	MI =
	A 30
	7 5 3
	0 3 3
	A 10 00
	9 10
Í	1 31
	Year Average Minimum Maxim Level Level Level Level
	2 3 1
Ĭ	10 2
	1 3
j.	-
	c. 51
	6 X
	[E \$]
#] = [
	1 31
	and the same of
1 1	num Maximum N
1.	2
6	
C	
7.0	
C	
	NW 108
	WEN TO
35	DI MRDIG
35	DL MRDLG
35	NRDLG I
35	DL MRDIG U
	OL MRDLG Unit
35	DL MRDLG Unit o
35	MRDLG
35	OL MRDLG Unit of Measure
35	DL MRDLG Unit of V
35	MRDLG Unit of Vio
35	DL MRDLG Unit of Viola
35	DL MRDLG Unit of Violation
35	N/A lanseaw Sidaw 10x
35	DI MRDIG Unit of Violation
35	OL MRDLG Unit of Violation III
35	DL MRDLG Unit of Violation Like
35	DL MRDLG Unit of Violation Likely
35	TOL MRDLG Unit of Violation likely S
35	DI MRDIG Unit of Violation Likely Sol
35	DL MRDLG Unit of Violation Likely Soun
35	DL MRDLG Unit of Violation Likely Source
35	NRDLG Unit of Violation Likely Source of Violati
35	NRDLG Unit of Violation Likely Source of (
35	NRDLG Unit of Violation Likely Source of Co
35	DL MRDLG Unit of Violation Likely Source of cont
35	DI MRDIG Unit of Violation Likely Source of Contain
35	DL MRDLG Unit of Violation Likely Source of contami
35	NRDLG Unit of Violation Likely Source of Contamin
35	DL MRDLG Unit of Violation Likely Source of contaminat
35	NRDLG Unit of Violation Likely Source of Contamination
35	NRDLG Unit of Violation Likely Source of Contamination Measure Y/N
35	DL MRDLG Unit of Violation Likely Source of Contamination
35	DL MRDLG Unit of Violation Likely Source of contamination
35	DL MRDLG Unit of Violation Likely Source of Contamination

La	00
Š	2
unn	9
000	non n
1001	nor.
ATMAT	D
1	-

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

Violation Type FOLLOW-UP OR ROUTINE TAP M/R (LCR) LEAD CONSUMER NOTICE (LCR) Violation Begin 12/30/2013 10/01/2012 Violation End 2015 Violation Explanation We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results. We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

Attached is the CCR (consumer confidence report) from our supplier Bluebonnet water Supply

2015 DRINKING WATER QUALITY REPORT BLUEBONNET WATER SUPPLY CORPORATION

We're pleased to present you with our 2015 Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. We are required by the Safe Drinking Water Act to prepare and deliver this report to you on an annual basis. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your drinking water. Our water source is Lake Belton.

This report shows our water quality and what it means. If you have any questions about this report or any other issue concerning your water utility, please contact Jim Lilley at (254) 986-2949. We want you to be informed about our water quality. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the Third Tuesday of the Month at 5:30p.m., at 6100 Water Supply Road, Temple, Texas.

Bluebonnet Water Supply Corporation routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2015. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk. In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non Detects(ND) - Laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) - One part per million corresponds to one minute in two years or a single penny in \$10,000.

<u>Parts per billion (ppb) or Micrograms per liter</u> - One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

<u>Parts per trillion (ppt) or Nanograms per liter (nanograms/l)</u> - One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

<u>Parts per quadrillion (ppq) or Picograms per liter (picograms/l)</u> - One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000,000.

<u>Picocuries per liter (pCi/L)</u> - Picocuries per liter is a measure of the radioactivity in water.

Millirems per year (mrem/yr) - Measure of radiation absorbed by the body.

<u>Million Fibers per Liter (MFL)</u> - Million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

<u>Nephelometric Turbidity Unit (NTU)</u> - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

<u>Action Level</u> - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

<u>Treatment Technique (TT)</u> - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

<u>Maximum Contaminant Level</u> - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal -The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

In the following table you will find a list of possible contaminants for which we test. If there is a detect or an MCL violation following the table will be an explanation of Health Effects.

			TEST RES	SULTS		
Contaminant	Violation Y/N	Level Detected	Unit Measurement	MCLG	MCL	Likely Source of Contamination
Microbiological Contam	inants					
1. Total Coliform Bacteria	NO	ND.	DETECTED, NOT DETECTED	0	presence of coliform bacteria in 5% of monthly samples	Naturally present in the environment
2. Fecal coliform and <i>E.coli</i>	NO	ND	DETECTED, NOT DETECTED	0	a routine sample and repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive	Human and animal fecal waste
3. Total Organic Carbon	NO	4.67	ppm	N/A	TT	Naturally present in the environment
4. Turbidity	NO	0.14 NTU Maximum detected, 100% lowest monthly % meeting requirement	N TU	0.3NTU	TT	Soil runoff
Radioactive Contamina	nts					
5. Beta/photon emitters	NO	ND	pCi/l	0	50	Decay of natural and man-made deposits
6. Alpha emitters	NO	ND	pCi/1	0	15	Erosion of natural deposits
7. Combined radium	NO	ND	pCi/I	0	5	Erosion of natural deposits
Inorganic Contaminant	s			And the second s	<u></u>	
8. Antimony	NO	ND	ppb	6	6	retardants; ceramics; electronics; solder
9. Arsenic	NO	ND	ppb	0		Erosion of natural deposits; runoff from orchards; runoff from glass and electroni production wastes
10. Asbestos	NO	ND	MFL	7	7	erosion of natural deposits
11. Barium	NO	0.0691	ppm	2	2	from metal refineries; erosion of natural deposits
12. Sodium	NO	20.2	ppm	NA	NA	Erosion of natural deposits; By-product of oil field activity

13. Beryllium	NO	ND	ppb	4	4	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
14. Cadmium	NO	ND	ppb	5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
15, Chromium	NO	ND	ppb	100	100	Discharge from steel and pulp mills; erosion of natural deposits
16. Copper	NO	0.0325	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Cyanide	NO	.06	ppb	200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
18. Fluoride	NO	0.17	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
18. Lead	NO	ND	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
19. Mercury (inorganic)	NO	ND	ppb	2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
20. Nitrate (as Nitrogen)	NO	0.64	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
21. Nitrite (as Nitrogen)	NO	ND	ppm	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
22. Selenium	NO	ND	ppb	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
23. Thallium	NO	ND	ppb	0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories
Synthetic Organic Contan	ninants inclu	iding Pestici	des and Herbicid	es		
24. 2,4-D	NO	ND	ppb	70	70	Runoff from herbicide used on row crops
25. 2,4,5-TP (Silvex)	NO	ND	ppb	50	50	Residue of banned herbicide
26. Acrylamide	NO	ND		0	TT	Added to water during sewage/wastewater treatment
27. Alachlor	NO	ND	ppb	0	2	Runoff from herbicide used on row crops
28. Atrazine	NO	0.21	ppb	3	3	Runoff from herbicide used on row crops
29. Benzo(a)pyrene (PAH)	NO	ND	nanograms/l	0	200	Leaching from linings of water storage tanks and distribution lines
30. Carbofuran	NO	ND	ppb	40	40	Leaching of soil fumigant used on rice and alfalfa
31. Chlordane	NO	ND	ppb	0	2	Residue of banned termiticide
32. Dalapon	NO	ND	ppb	200	200	Runoff from herbicide used on rights of way
33. Di(2-ethylhexyl) adipate	NO	ND	ppb	400	400	Discharge from chemical factories
34. Di(2-ethylhexyl) phthalate	NO	ND	ppb	0	6	Discharge from rubber and chemical factories
35. Dibromochloro- propane	NO	ND	nanograms/1	0	200	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
36. Dinoseb	NO	ND	ppb	7	7	Runoff from herbicide used on soybeans and vegetables
37. Diquat	NO	ND	ppb	20	20	Runoff from herbicide use

38. Dioxin [2,3,7,8-TCDD]	NO	ND	picograms/l	0	30	Emissions from waste incineration and other combustion; discharge from chemical factories
39. Endothall	NO	ND	ppb	100	100	Runoff from herbicide use
0. Endrin	NO	ND	ppb	2	2	Residue of banned insecticide
11. Epichlorohydrin	NO	ND		0	TT	Discharge from industrial chemical factories; an impurity of some water treatment chemicals
12. Ethylene dibromide	NO	ND	nanograms/1	0	50	Discharge from petroleum refineries
3. Glyphosate	NO	ND	ppb	700	700	Runoff from herbicide use
4. Heptachlor	NO	ND	nanograms/1	0	400	Residue of banned termiticide
5. Heptachlor epoxide	NO	ND	nanograms/1	0	200	Breakdown of heptachlor
6. Hexachlorobenzene	NO	ND	ppb	0	1	Discharge from metal refineries and agricultural chemical factories
17. Hexachlorocyclo- pentadiene	NO	ND	ppb	50	50	Discharge from chemical factories
48. Lindane	NO	ND	nanograms/l	200	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
49. Methoxychlor	NO	ND	ppb	40	40	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
50. Oxamyl [Vydate]	NO	ND	ppb	200	200	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
51. PCBs [Polychlorinated biphenyls]	NO	ND	nanograms/1	0	500	Runoff from landfills; discharge of waste chemicals
52. Pentachlorophenol	NO	ND	ppb	0	1	Discharge from wood preserving factorie
53. Picloram	NO	ND	ppb	500	500	Herbicide runoff
54. Simazine	NO	ND	ppb	4	4	Herbicide runoff
55. Toxaphene	NO	ND	ppb	0	3	Runoff/leaching from insecticide used on cotton and cattle
Volatile Organic Contami	nants					
56. Benzene	NO	ND	ppb	0	5	Discharge from factories; leaching from gas storage tanks and landfills
57. Carbon tetrachloride	NO	.5	ppb	0	5	Discharge from chemical plants and othe industrial activities
58. Chlorobenzene	NO	ND	ppb	100	100	Discharge from chemical and agricultura chemical factories
59. o-Dichlorobenzene	NO	ND	ppb	600	600	Discharge from industrial chemical factories
60. p-Dichlorobenzene	NO	ND	ppb	75	75	Discharge from industrial chemical factories
61. 1,2 - Dichloroethane	NO	ND	ppb	0	5	Discharge from industrial chemical factories
62. 1,1 - Dichloroethylene	NO	ND	ppb	7	7	Discharge from industrial chemical factories
63. cis-1,2-ichloroethylene	NO	ND	ppb	70	70	Discharge from industrial chemical factories
64. trans - 1,2 - Dichloroethylene	NO	ND	ppb	100	100	Discharge from industrial chemical factories
65. Dichloromethane	NO	ND	ppb	0	5	Discharge from pharmaceutical and chemical factories
66. 1,2-Dichloropropane	NO	ND	ppb	0	5	Discharge from industrial chemical factories
67. Ethylbenzene	NO	ND	ppb	700	700	Discharge from petroleum refineries

68. Styrene	NO	ND	ppb	100	100	Discharge from rubber and plastic factories; leaching from landfills
69. Tetrachloroethylene	NO	ND	ppb	0	5	Leaching from PVC pipes; discharge from factories and dry cleaners
70. 1,2,4 -Trichlorobenzene	NO	ND	ppb	70	70	Discharge from textile-finishing factories
72. 1,1,1 - Trichloroethane	NO	ND	ppb	200	200	Discharge from metal degreasing sites and other factories
73. 1,1,2 -Trichloroethane	NO	ND	ppb	3	5	Discharge from industrial chemical factories
74. Trichloroethylene	NO	ND	ppb	0	5	Discharge from metal degreasing sites and other factories
75. TTHM [Total trihalomethanes]	NO	22.1	ppb	0	80	By-product of drinking water disinfection
76. HAA5 [Halo acetic acids]	NO	26.5	ppb	N/A	60	By-products of drinking water disinfection
76. Toluene	NO	ND	ppm	1	1	Discharge from petroleum factories
77. Vinyl Chloride	NO	ND	ppb	0	2	Leaching from PVC piping: discharge from plastics factories
79. Xylenes	NO	ND	ppm	10	10	Discharge from petroleum factories; discharge from chemical factories

Microbiological Contaminants:

(1) Total Coliform. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

(2) Fecal coliform/E.Coli. Fecal coliforms and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.

(3) Turbidity. Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated

headaches.

Radioactive Contaminants:

(4) Beta/photon emitters. Certain minerals are radioactive and may emit forms of radiation known as photons and beta radiation. Some people who drink water containing beta and photon emitters in excess of the MCL over many years may have an increased risk of getting cancer.

Inorganic Contaminants:

- (10) Barium. Some people who drink water containing barium in excess of the MCL over many years could experience an increase in their blood pressure.
- (13) Chromium. Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.
- (14) Copper. Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.
- (16) Fluoride. Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Children may get mottled teeth.
- (19) Nitrate. Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.
- (21) Selenium. Selenium is an essential nutrient. However, some people who drink water containing selenium in excess of the MCL over many years could experience hair or fingernail losses, numbness in fingers or toes, or problems with their circulation.

Synthetic organic contaminants including pesticides and herbicides:

(27) Atrazine. Some people who drink water containing atrazine well in excess of the MCL over many years could experience problems with their cardiovascular system or reproductive difficulties.

Volatile Organic Contaminants:

(73) TTHMs [Total Trihalomethanes]. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Inadequately treated water may contain disease-causing organisms. These organisms include bacteria, viruses, and parasites, which can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

MCL's are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

SPECIAL NOTICE FOR THE ELDERLY, INFANTS, CANCER PATIENTS, PEOPLE WITH HIV/AIDS OR OTHER IMMUNE PROBLEMS

You may be more vulnerable to certain microbial contaminants in drinking water that the general population. In particular, infection by cryptosporidium is of concern. Infants, some elderly, or IMMUNO-COMPRISIED PERSON such as those UNDERGOING CHEMOTHERAPY FOR CANCER; those who have undergone ORGAN TRANSPLANTS; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791), the Texas Department of Health, or your local Health Department or District.

Please call our office if you have questions.